Seismic Damage Estimation of High-Rise RC Box-type Bearing Wall Wall Structures in Korea

SEP 30th, 2014

H.S. Lee¹, K.R. Hwang², G.H. Jeong²

1 Professor, Korea University, Seoul, Korea
2 PhD student, Korea University, Seoul, Korea
Analytical Calibration of Prototype Building

Prototype model
- Wall thick: 180/160mm
- Slab thick: 200mm
- Height: 40.5m (15-story)
- $f'_c=24$ MPa, $f_y=400$ MPa
- A_w/A_f (X-dir.)=2.67%
- A_w/A_f (Y-dir.)=4.71%

PERFORM-3D Modeling
- Nonlinear time history analysis
- Wall: “Inelastic shear wall”
- Slab: “Inelastic beam” with plastic hinges ($M-\phi$)
- Coupling beam: “Inelastic beam” with $M-\phi$, and shear hinges

Shake-table test
- Full scale 15-story box-type wall building model (PERFORM-3D)

Plotted image information:
- Wall thick = 15~20cm
- Ratio of total wall area to floor plan area ≈ 3%
- 2010 Chile EQ.
Behaviors of wall, coupling beam, and slab at each limit state

- Axial strain, LS1
 - Coalinga, 1983
 - Parkfield, 1966
 - Whittier N., 1987

- Axial strain, LS2
 - Kobe, 1995
 - Loma Prieta, 1989
 - Westmorland, 1981

- Axial strain, LS3
 - Northridge, 1994
 - Concepcion, 2010
 - Gazli, 1976

- Coupling beam
 - Concepcion

- Slab
 - Concepcion

- Earthquake record number
 - Concepcion

Yielding of rebar
Seismic Fragility Relationship (2/2)

- Fragility curves for all IMs

\[
P(EDP \geq LS \mid IM) = \Phi \left(\frac{\ln IM - \lambda}{\zeta} \right)\]

- Probabilities exceeding at the \(Sa = 0.22g \) (T=1.0s) (MCE in Korea)
 - LS1 (Serviceability): 27.9%
 - LS2 (Damage control): 2.8%
 - LS3 (Collapse prevention): 0.55%